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Labeling System
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Components of the power plant reference designation system
(germ. Kraftwerkskennzeichensystem, abbreviated as KKS):

Overall system:
Counting the overall systems.

Function:
Main group and subgroups of functional units.

Aggregate:
Aggregate is part of a subgroup and itself a group of units.

Operating resources:
Operating equipment or signal indicator in the aggregate.
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Schema of the KKS:

Overall system (OS)︷ ︸︸ ︷
L or D

Function (F)︷ ︸︸ ︷
(D)LLLDD

Aggregate (A)︷ ︸︸ ︷
LLDDD(L)

Operating resources (OR)︷ ︸︸ ︷
LLDD

Example:

Block.︷︸︸︷
1

Main group 2L:
2nd steam, water, gas circuit.

Subgroup (2L)A:
Feedwater system.

Subgroup (2LA)C:
Feedwater pumping system.

Counter (2LAC)03:
3rd feedwater pumping system.︷ ︸︸ ︷

(2)LAC03

Main group C:
Direct measurement.

Subgroup (C)T:
Temperature measurement.

Counter (CT)002:
2nd temperature measurement.︷ ︸︸ ︷

CT002(-)

Main group Q:
Control equipment.

Subgroup (Q)T:
Immersion sleeves.

Counter (QT)12:
12th immersion sleeve.︷︸︸︷

QT12
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Smooth manifold assumption:

1. Let (ti) := {ti }
n
i=0, with ti ∈ T be a time series, and T a

strictly totally ordered set.

2. Let f : T ! R be a function, then f ◦ (ti) = (f (ti)) is
certainly a time series.

3. On an open interval, (a, b), there exists a polynomial

function, p : (a, b) ! R, approximating (f (ti)) with
ε-error, or in other words arbitrarily well.

4. For a smooth function p : (a, b) ! R its graph

Gp := {(ti , p(ti)) | ti ∈ (a, b)} is a smooth manifold with

atlasϕ : Gp ! R, ϕ(ti , p(ti)) 7! ti . Gp ∼= R as smooth

manifolds, thus higher homology groups of Gp are trivial.
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Geometry of SWM,τf (t)
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The sliding-window embedding is given by

SWM,τf (t) = [f (t) f (t + τ) · · · f (t + Mτ)]> , (1)

where τ is called step size or time delay, Mτ is called window size and
M + 1 is the dimension of the embeddings’ space. The sliding-window
point cloud associated with T is

SWM,τf := {SWM,τf (ti) | ti ∈ T }. (2)

Periodicity of f (T )
Period f (ti + 2π/L) = f (ti)
Number of harmonics N
Number of (non-)commensurate

frequencies N

Circularity of
SWM,τf (T ) ⊂ RM+1

Roundness Mτ = M
M+1

2π
L

Ambient dimension M ≥ 2N
Intrinsic dimension

⊂ S1
1 × · · · × S1

N
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Illustration following Perea
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Sliding-window

f (T )

SWM,τf (T ) ⊂ RM+1

↪−→



Remark: Homology ofTn
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Let T2 ∼= S1 × S1
and Zp := Z/(pZ) with p prime.

We use that

H0(S1;Zp) = H1(S1;Zp) = Zp, (3)

Hi(S1;Zp) = 0, for i > 1. (4)

Thus, we get

H1(T2;Zp) = Zp ⊕ Zp, (5)

H2(T2;Zp) = Zp, (6)

Hi(T2;Zp) = 0, for i > 2. (7)
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The homology groups of a sphere are torsion free. As we work in a field

of coefficients, we can apply Künneth’s formula, because all modules

over a field are free.

Thus, we can generalize for Tn ∼= S1
1 × · · · × S1

n:

Hk(Tn;Zp) =
⊕

i1+···+ir=k
Hi1(S

1;Zp)⊗ · · · ⊗ Hir (S1;Zp), (8)

Hk(Tn;Zp) = Z
(n

k
)

p . (9)

In fact, we have now a relation between the dimension of the

embedding (if it is a hyper-torus) and its homology groups.
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Recall, that βk := rank Hk(X ;F).

n Tn β0 β1 β2 β3 β4 β5
0 one-point-space 1 0 0 0 0 0
1 circle 1 1 0 0 0 0
2 2-torus 1 2 1 0 0 0
3 3-torus 1 3 3 1 0 0
4 4-torus 1 4 6 4 1 0
5 5-torus 1 5 10 10 5 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Heuristic Choice of Parameters
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We examined about 18 · 103
different signals from four

different combined cycle gas turbine power plants with a total
of two gas turbines, two boilers for steam generation and one
steam turbine.

Time delay is set to τ = 1.
Embedding dimension is set to M = 5 using the false nearest
neighbor algorithm.
Distribution of optimal dimension per signal:

M = 2 : 4.345, M = 3 : 2.594, M = 4 : 3.877, M = 5 : 7.347.
Time series with persistence entropy≥ 0.98 on the persistence
diagrams of SWM,τf associated with Tj have been removed.
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Persistence representations of the
heating medium system of a gas turbine power plant:

1

x
y

z

β0-curve 2

x
y

z

β0-silhouette

3

x
y

z

β1-curve 4

x
y

z

β1-silhouette



Neural Network
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Filters: 64,
Kernel-size: 3,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Padding: Causal,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.

Units: 32,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.



Neural Network

Experimental Setup 17/24

Filters: 64,
Kernel-size: 3,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Padding: Causal,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.

Units: 32,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.



Neural Network

Experimental Setup 17/24

Filters: 64,
Kernel-size: 3,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Padding: Causal,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.

Units: 32,
Kernel init.: Glorot normal,
Bias init.: Zeros,
Residual: C1

,

L1
-regularization: 0.001,

L2
-regularization: 0.01.



Experimental Results 18/24

ExperimentalResults



Results

Experimental Results 19/24

OS F A OR Accuracy F1 Precision Recall

C0
-ConvNet without topological features:

3 3 3 3 0.4821 ±0.0031 0.5677 ±0.0033 0.6912 ±0.0029 0.4816 ±0.0037

3 7 7 7 0.7129 ±0.0102 0.7904 ±0.0092 0.9010 ±0.0097 0.7041 ±0.0088

3 3 7 7 0.5691 ±0.0037 0.6830 ±0.0058 0.8699 ±0.0065 0.5622 ±0.0052

3 3 3 7 0.5426 ±0.0055 0.6681 ±0.0036 0.8682 ±0.0048 0.5429 ±0.0029

C0
-ConvNet:

3 3 3 3 0.6142 ±0.0047 0.6212 ±0.0077 0.7681 ±0.0082 0.5216 ±0.0073

3 7 7 7 0.8316 ±0.0121 0.8511 ±0.0063 0.9327 ±0.0163 0.7827 ±0.0039

3 3 7 7 0.7024 ±0.0091 0.7567 ±0.0101 0.8756 ±0.0109 0.6663 ±0.0094

3 3 3 7 0.6291 ±0.0078 0.7376 ±0.0065 0.8726 ±0.0056 0.6389 ±0.0077

C1
-ConvNet:

3 3 3 3 0.6383 ±0.0085 0.6566 ±0.0055 0.7849 ±0.0074 0.5597 ±0.0076

3 7 7 7 0.8221 ±0.0028 0.8497 ±0.0023 0.9267 ±0.0033 0.7846 ±0.0018

3 3 7 7 0.7284 ±0.0019 0.7670 ±0.0027 0.8826 ±0.0017 0.6782 ±0.0066

3 3 3 7 0.6524 ±0.0009 0.7276 ±0.0028 0.8821 ±0.0032 0.6192 ±0.0025



Summary
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The best classification results are about 64% for the entire
KKS (OS F A OR), about 65% for the aggregate (OS F A),
73% for the functional level (OS F), and 83% for the entire
system (OS).

For all experiments it holds that precision� recall. Thus,

the exactness of our classifier is relatively huge in

comparison to its average completeness per class.

We have shown that residual connections improve

classification results for all labels except for the overall
system (OS) assignment.

The use of β0 and β1-curves improved the expected value of

the classification results for all label variants studied.
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Closing Thoughts
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Other experiments performed by
some of our students show that the

OR-entity achieves the highest
accuracy in predicting the

constituent identifiers in all models

tested, followed by A, F, and OS.

This is promising since we have already

demonstrated an accuracy of 83% for OS.
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Since the signal is embedded in a
torus, one could construct neural
network layers operating on a

given Lie group
(S1

1 × · · · × S1
p
∼= Tp)× Rq

and

perform parallel transport.

The required smooth manifold can be

derived from the persistence diagram.
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Further experiments shall be

performed without using the

corresponding numbers of the
aggregates and functional units.
This would result in much higher

accuracy and would be sufficient

for practical use.
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Have I piqued your interest?

Drop me a line:

� luciano.melodia@fau.de!

And please � our repository:

� https://github.com/karhunenloeve/TwirlFlake.

The icons used on these slides were kindly provided by

https://flaticons.com and https://fontawesome.com.
We express our gratitude and appreciation for this!

https://github.com/karhunenloeve/TwirlFlake
https://flaticons.com
https://fontawesome.com
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