Homological Analysis of Sensors from Power Plants

ьу Luciano Melodia

13th September 2021

Affiliations

Professorship for Evolutionary Data Management Friedrich-Alexander University Erlangen-Nürnberg Martensstrasse 3, 91058 Erlangen Germany

This project is a cooperation between:

Classification of Power Plant Sensor Data:

- Labeling System.
- Structure of the Argument.

Classification of Power Plant Sensor Data:

- Labeling System.
- Structure of the Argument.

> Theoretical Background:

- Geometry of $\mathbb{SW}_{M,\tau}f(t)$.
- Persistent Homology of $\mathbb{SW}_{M,\tau}f(t)$.
- Remark: Homology of \mathbb{T}^n .

Classification of Power Plant Sensor Data:

- Labeling System.
- Structure of the Argument.

> Theoretical Background:

- Geometry of $\mathbb{SW}_{M,\tau}f(t)$.
- Persistent Homology of $\mathbb{SW}_{M,\tau}f(t)$.
- Remark: Homology of \mathbb{T}^n .

Experimental Setup:

- Homological Analysis.
- Neural Network.

Classification of Power Plant Sensor Data:

- Labeling System.
- Structure of the Argument.

> Theoretical Background:

- Geometry of $\mathbb{SW}_{M,\tau}f(t)$.
- Persistent Homology of $\mathbb{SW}_{M,\tau}f(t)$.
- Remark: Homology of \mathbb{T}^n .

Experimental Setup:

- Homological Analysis.
- Neural Network.

Experimental Results:

- Results.
- Summary.
- Closing Thoughts.

Classification of Power Plant Sensor Data

Classification of Power Plant Sensor Data

Overall system:

Counting the overall systems.

• Overall system:

Counting the overall systems.

Function:

Main group and subgroups of functional units.

Overall system:

Counting the overall systems.

Function:

Main group and subgroups of functional units.

Aggregate:

Aggregate is part of a subgroup and itself a group of units.

• Overall system:

Counting the overall systems.

Function:

Main group and subgroups of functional units.

Aggregate:

Aggregate is part of a subgroup and itself a group of units.

Operating resources:

Operating equipment or signal indicator in the aggregate.

Labeling System

Schema of the KKS:

Labeling System

Schema of the KKS:

Example:

Main group C:

Direct measurement.

Subgroup (C)T:

Temperature measurement.

Counter (CT)002:

2nd temperature measurement.

Main group Q:

Control equipment.
Subgroup (Q)T:

Immersion sleeves.

12th immersion sleeve.

Block.

Smooth manifold assumption:

1. Let $(t_i) := \{t_i\}_{i=0}^n$, with $t_i \in T$ be a time series, and T a strictly totally ordered set.

Smooth manifold assumption:

- 1. Let $(t_i) := \{t_i\}_{i=0}^n$, with $t_i \in T$ be a time series, and T a strictly totally ordered set.
- 2. Let $f : T \to \mathbb{R}$ be a function, then $f \circ (t_i) = (f(t_i))$ is certainly a time series.

Smooth manifold assumption:

- 1. Let $(t_i) := \{t_i\}_{i=0}^n$, with $t_i \in T$ be a time series, and T a strictly totally ordered set.
- 2. Let $f : T \to \mathbb{R}$ be a function, then $f \circ (t_i) = (f(t_i))$ is certainly a time series.
- 3. On an open interval, (a, b), there exists a polynomial function, $p : (a, b) \rightarrow \mathbb{R}$, approximating $(f(t_i))$ with ϵ -error, or in other words arbitrarily well.

Smooth manifold assumption:

- 1. Let $(t_i) := \{t_i\}_{i=0}^n$, with $t_i \in T$ be a time series, and T a strictly totally ordered set.
- 2. Let $f : T \to \mathbb{R}$ be a function, then $f \circ (t_i) = (f(t_i))$ is certainly a time series.
- 3. On an open interval, (a, b), there exists a polynomial function, $p : (a, b) \rightarrow \mathbb{R}$, approximating $(f(t_i))$ with ϵ -error, or in other words arbitrarily well.
- 4. For a smooth function $p : (a, b) \to \mathbb{R}$ its graph $\mathcal{G}p := \{(t_i, p(t_i)) \mid t_i \in (a, b)\}$ is a smooth manifold with atlas $\varphi : \mathcal{G}p \to \mathbb{R}, \varphi(t_i, p(t_i)) \mapsto t_i. \mathcal{G}p \cong \mathbb{R}$ as smooth manifolds, thus higher homology groups of $\mathcal{G}p$ are trivial.

Theoretical Background

Theoretical Background

Geometry of $\mathbb{SW}_{M,\tau}f(t)$

The sliding-window embedding is given by

$$SW_{M,\tau}f(t) = [f(t) f(t+\tau) \cdots f(t+M\tau)]^{\top}, \qquad (1)$$

where τ is called *step size* or *time delay*, $M\tau$ is called *window size* and M + 1 is the dimension of the embeddings' space. The *sliding-window point cloud associated with* T is

$$\mathbb{SW}_{M,\tau}f := \{ \mathrm{SW}_{M,\tau}f(t_i) \mid t_i \in T \}.$$
(2)

Geometry of $\mathbb{SW}_{M,\tau}f(t)$

The sliding-window embedding is given by

$$SW_{M,\tau}f(t) = [f(t) f(t+\tau) \cdots f(t+M\tau)]^{\top}, \qquad (1)$$

where τ is called *step size* or *time delay*, $M\tau$ is called *window size* and M + 1 is the dimension of the embeddings' space. The *sliding-window point cloud associated with* T is

$$\mathbb{SW}_{M,\tau}f := \{ \mathrm{SW}_{M,\tau}f(t_i) \mid t_i \in T \}.$$
(2)

Periodicity of f(T)Period $f(t_i + 2\pi/L) = f(t_i)$ Number of harmonics NNumber of (non-)commensurate frequencies N Circularity of $\mathbb{SW}_{M,\tau}f(T) \subset \mathbb{R}^{M+1}$ Roundness $M\tau = \frac{M}{M+1}\frac{2\pi}{L}$ Ambient dimension $M \ge 2N$ Intrinsic dimension $\subset \mathbb{S}_1^1 \times \cdots \times \mathbb{S}_N^1$

Illustration following Perea

Remark: Homology of \mathbb{T}^n

Let $\mathbb{T}^2 \cong \mathbb{S}^1 \times \mathbb{S}^1$ and $\mathbb{Z}_p := \mathbb{Z}/(p\mathbb{Z})$ with p prime. We use that

$$H_0(\mathbb{S}^1;\mathbb{Z}_p) = H_1(\mathbb{S}^1;\mathbb{Z}_p) = \mathbb{Z}_p,\tag{3}$$

$$H_i(\mathbb{S}^1;\mathbb{Z}_p) = 0, \text{ for } i > 1.$$
 (4)

Remark: Homology of \mathbb{T}^n

Let $\mathbb{T}^2 \cong \mathbb{S}^1 \times \mathbb{S}^1$ and $\mathbb{Z}_p := \mathbb{Z}/(p\mathbb{Z})$ with p prime. We use that

$$H_0(\mathbb{S}^1;\mathbb{Z}_p) = H_1(\mathbb{S}^1;\mathbb{Z}_p) = \mathbb{Z}_p,\tag{3}$$

$$H_i(\mathbb{S}^1; \mathbb{Z}_p) = 0, \text{ for } i > 1.$$
 (4)

Thus, we get

$$H_1(\mathbb{T}^2;\mathbb{Z}_p) = \mathbb{Z}_p \oplus \mathbb{Z}_p, \tag{5}$$

$$H_2(\mathbb{T}^2;\mathbb{Z}_p) = \mathbb{Z}_p,\tag{6}$$

$$H_i(\mathbb{T}^2;\mathbb{Z}_p) = 0, \text{ for } i > 2.$$
 (7)

The homology groups of a sphere are torsion free. As we work in a field of coefficients, we can apply Künneth's formula, because all modules over a field are free. The homology groups of a sphere are torsion free. As we work in a field of coefficients, we can apply Künneth's formula, because all modules over a field are free.

Thus, we can generalize for $\mathbb{T}^n \cong \mathbb{S}_1^1 \times \cdots \times \mathbb{S}_n^1$:

$$H_{k}(\mathbb{T}^{n};\mathbb{Z}_{p}) = \bigoplus_{i_{1}+\dots+i_{r}=k} H_{i_{1}}(\mathbb{S}^{1};\mathbb{Z}_{p}) \otimes \dots \otimes H_{i_{r}}(\mathbb{S}^{1};\mathbb{Z}_{p}), \quad (8)$$
$$H_{k}(\mathbb{T}^{n};\mathbb{Z}_{p}) = \mathbb{Z}_{p}^{\binom{n}{k}}. \quad (9)$$

In fact, we have now a relation between the dimension of the embedding (if it is a hyper-torus) and its homology groups.

Recall, that $\beta_k := \operatorname{rank} H_k(X; \mathbb{F})$.

n	\mathbb{T}^n	β ₀	β_1	β2	β ₃	β4	β_5
0	one-point-space	1	0	0	0	0	0
1	circle	1	1	0	0	0	0
2	2-torus	1	2	1	0	0	0
3	3-torus	1	3	3	1	0	0
4	4-torus	1	4	6	4	1	0
5	5-torus	1	5	10	10	5	1
÷		÷	:	•••	:	•••	:

Experimental Setup

 We examined about 18 · 10³ different signals from *four* different combined cycle gas turbine power plants with a total of two gas turbines, two boilers for steam generation and one steam turbine.

- We examined about 18 · 10³ different signals from *four* different combined cycle gas turbine power plants with a total of two gas turbines, two boilers for steam generation and one steam turbine.
- Time delay is set to $\tau = 1$.

- We examined about 18 · 10³ different signals from *four* different combined cycle gas turbine power plants with a total of two gas turbines, two boilers for steam generation and one steam turbine.
- Time delay is set to $\tau = 1$.

 Embedding dimension is set to M = 5 using the false nearest neighbor algorithm.
 Distribution of optimal dimension per signal: M = 2 : 4.345, M = 3 : 2.594, M = 4 : 3.877, M = 5 : 7.347.

- We examined about 18 · 10³ different signals from *four* different combined cycle gas turbine power plants with a total of two gas turbines, two boilers for steam generation and one steam turbine.
- Time delay is set to $\tau = 1$.
- Embedding dimension is set to M = 5 using the false nearest neighbor algorithm.
 Distribution of optimal dimension per signal: M = 2 : 4.345, M = 3 : 2.594, M = 4 : 3.877, M = 5 : 7.347.
- Time series with *persistence entropy* ≥ 0.98 on the *persistence diagrams of* SW_{M,τ}*f associated with T_j* have been removed.

Homological Analysis

Persistence representations of the heating medium system of a gas turbine power plant:

Neural Network

Neural Network

Filters: 64, Kernel-size: 3, Kernel init.: *Glorot normal*, Bias init.: *Zeros*, Padding: *Causal*, Residual: C^1 , L^1 -regularization: 0.001, L^2 -regularization: 0.01.

Neural Network

Experimental Results

Results

OS	F	Α	OR	Accuracy	F1	Precision	Recall
			\mathcal{C}^{0}	-ConvNet with	IOUT TOPOLOGIC	AL FEATURES:	
1	1	1	1	0.4821 ± 0.0031	0.5677 ±0.0033	0.6912 ±0.0029	0.4816 ±0.0037
1	X	X	X	0.7129 ±0.0102	0.7904 ±0.0092	0.9010 ±0.0097	0.7041 ±0.0088
1	1	X	X	0.5691 ±0.0037	0.6830 ±0.0058	0.8699 ±0.0065	0.5622 ±0.0052
1	1	1	X	0.5426 ± 0.0055	0.6681 ± 0.0036	0.8682 ± 0.0048	0.5429 ± 0.0029

 \mathcal{C}^0 -ConvNet:

1	1	1	1	0.6142 ± 0.0047	0.6212 ± 0.0077	0.7681 ± 0.0082	0.5216 ±0.0073
1	X	X	X	0.8316 ± 0.0121	0.8511 ±0.0063	0.9327 ±0.0163	$\textbf{0.7827} \pm 0.0039$
1	1	X	X	0.7024 ±0.0091	0.7567 ±0.0101	0.8756 ±0.0109	0.6663 ± 0.0094
1	1	1	X	0.6291 ±0.0078	0.7376 ±0.0065	0.8726 ± 0.0056	0.6389 ±0.0077

 \mathcal{C}^1 -ConvNet:

1	1	1	1	0.6383 ±0.0085	0.6566 ±0.0055	$\textbf{0.7849} \pm 0.0074$	0.5597 ±0.0076
1	X	X	X	$\textbf{0.8221} \pm 0.0028$	0.8497 ± 0.0023	0.9267 ± 0.0033	0.7846 ± 0.0018
1	1	X	X	0.7284 ± 0.0019	0.7670 ±0.0027	$\textbf{0.8826} \pm 0.0017$	0.6782 ± 0.0066
1	1	1	X	0.6524 ±0.0009	0.7276 ±0.0028	0.8821 ± 0.0032	0.6192 ±0.0025

The best classification results are about 64% for the *entire KKS* (OS F A OR), about 65% for the *aggregate* (OS F A), 73% for the *functional level* (OS F), and 83% for the *entire system* (OS).

- The best classification results are about 64% for the *entire* KKS (OS F A OR), about 65% for the *aggregate* (OS F A), 73% for the *functional level* (OS F), and 83% for the *entire* system (OS).
- For all experiments it holds that precision ≫ recall. Thus, the exactness of our classifier is relatively huge in comparison to its average completeness per class.

- The best classification results are about 64% for the *entire* KKS (OS F A OR), about 65% for the *aggregate* (OS F A), 73% for the *functional level* (OS F), and 83% for the *entire* system (OS).
- For all experiments it holds that precision ≫ recall. Thus, the exactness of our classifier is relatively huge in comparison to its average completeness per class.
- We have shown that residual connections improve classification results for all labels except for the *overall system* (OS) assignment.

- The best classification results are about 64% for the *entire* KKS (OS F A OR), about 65% for the *aggregate* (OS F A), 73% for the *functional level* (OS F), and 83% for the *entire* system (OS).
- For all experiments it holds that precision ≫ recall. Thus, the exactness of our classifier is relatively huge in comparison to its average completeness per class.
- We have shown that residual connections improve classification results for all labels except for the *overall system* (OS) assignment.
- The use of β₀ and β₁-curves improved the expected value of the classification results for all label variants studied.

Other experiments *performed by some of our students* show that the **OR-entity** achieves the **highest accuracy** in predicting the constituent identifiers in all models tested, followed by A, F, and OS.

This is promising since we have already demonstrated an **accuracy of** 83% **for OS.**

Closing Thoughts

Since the signal is embedded in a torus, one could construct neural network layers operating on a given Lie group $(\mathbb{S}_1^1 \times \cdots \times \mathbb{S}_p^1 \cong \mathbb{T}^p) \times \mathbb{R}^q$ and perform parallel transport.

The required smooth manifold can be derived from the persistence diagram.

Further experiments shall be performed <u>without</u> using the corresponding **numbers of the aggregates** and **functional units**. This would result in much higher accuracy and would be sufficient for practical use.

- Melodia L., Lenz, R.: Estimate of the Neural Network Dimension Using Algebraic Topology and Lie Theory. Image Mining. Theory and Applications VII, pp.15-29 (2020).
- Melodia L., <u>Lenz R.</u>: Persistent Homology as Stopping-Criterion for Voronoi Interpolation. Proceedings of the International Workshop on Combinatorial Image Analysis, pp. 29–44 (2019).

References II

- Perea, J.: Topological Time Series Analysis. Notices of the American Mathematical Society 66, (2019).
- Perea, J.: Persistent Homology of Toroidal Sliding Window Embeddings. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6435 – 6439 (2016).
- Perea J.: Topological Time Series Analysis. Lecture 2: Persistent Homology of Sliding Window Point Clouds. https://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/ SummerSchool2016/perea_lect2.pdf.
- Perea J.: Topological Time Series Analysis. Day 1: Geometry of Sliding Window Embeddings. https://www-m15.ma.tum.de/foswiki/ pub/M15/Allgemeines/SummerSchool2016/perea_lect1.pdf.
- Perea, J., Harer, J.: Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis. Foundations of Computational Mathematics 15, pp. 799 – 838 (2015).

Have I piqued your interest? Drop me a line: Luciano.melodia@fau.de!

And please \bigstar our repository: \bigcirc https://github.com/karhunenloeve/TwirlFlake.

The icons used on these slides were kindly provided by https://flaticons.com and https://fontawesome.com. We express our gratitude and appreciation for this!