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Abstract. This paper explores the foundational concepts of simplicial
structures that form the basis of simplicial homology theory. It also
introduces singular homology as a means to establish the equivalence
of homology groups for homeomorphic topological spaces. The paper
concludes by providing a proof of the equivalence between simplicial
and singular homology groups.

We follow the structure and explanations provided by Nadathur
[7] and Hatcher [3]. In particular, the definitions are taken from the
introductory book of Boissonnat et al. [1], as well as from Jonsson’s
introduction [4] and the paper on computational topology by Melodia
et al. [6]. Some individual lemmas and proof ideas are drawn from
Khoury [5] or from the textbook by Edelsbrunner et al. [2], but they
have been adapted, expanded, and implemented independently. To
enhance readability, we have omitted reference citations within the text.
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1. Simplicial Complexes

We would like to emphasize that a collection of points X = {x0, x1, . . . , xd}
in Rn is considered to be affinely independent if these points do not lie within
any affine subspace of dimension lower than d.
Definition 1.1. Given a set X = {x0, x1, . . . , xd} ⊂ Rn consisting of d + 1
affinely independent points, the d-dimensional simplex σ(d), also known as
a d-simplex, is defined as the set of all convex combinations of these points.

(1) σ(d) :=

{
d∑

i=0

λixi |
d∑

i=0

λi = 1, λi ≥ 0

}
.

As a convention, the empty set ∅ is included as a face, representing the
simplex formed by the empty subset of vertices. A 0-simplex represents a
single point, a 1-simplex represents a line segment connecting two points, a
2-simplex represents a triangle, and a 3-simplex represents a tetrahedron. It
is worth mentioning that the d-simplex is homeomorphic to the d-dimensional
disk Dd.

Furthermore, it is worth noting that σ(d) represents the convex hull of the
points X, which can be defined as the smallest convex subset of Rn that
contains all the points x0, x1, . . . , xd. The faces of the simplex σ(d) with
vertex set X are simplices formed by subsets of X. An d-face of a simplex
refers to a subset of the vertices of the simplex with a cardinality of d + 1.
The faces of a d-simplex with a dimension less than d are known as its proper
faces. Two simplices are considered to be properly situated if their intersection
is either empty or a face of both simplices. By identifying simplices along
entire faces, we can construct the resulting simplicial complexes.
Definition 1.2. A simplicial complex K is a finite collection of simplices
that satisfies the following properties:

(1) For every simplex σ(d) in K and every face τ (k) with k < d of σ(d),
it follows that τ (k) is also in K.

(2) If σ(d) and τ (k) are both simplices in K, then they are properly situ-
ated.

The dimension of K is defined as the highest dimension among its sim-
plices. For a simplicial complex K in Rn, its underlying space |K| is the
union of all the simplices in K. The topology of K is determined by the
topology induced on |K| by the standard topology in Rn. It is important
to note that when the vertex set is known, a simplicial complex in Rn can
be fully characterized by listing its simplices. As a result, we can describe it
purely in terms of combinatorics using abstract simplicial complexes.
Definition 1.3. Consider a finite set V = {v1, . . . , vn}. An abstract sim-
plicial complex K̃ with vertex set V is a collection of finite subsets of V
that satisfies the following two conditions:

(1) All elements of V are included in K̃.
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(2) If σ(d) is a subset of K̃ and τ (k) is a subset of σ(d), then τ (k) is also
a subset of K̃.

The abstract simplicial complex K̃ associated with a simplicial complex
K is commonly referred to as its vertex scheme. Conversely, if an abstract
complex K̃ serves as the vertex scheme for a complex K in Rn, then K is
known as a geometric realization of K̃.

Lemma 1.4. Every finite abstract simplicial complex K̃ can be realized geo-
metrically in a Euclidean space.

Proof. Let {v1, v2, . . . , vn} denote the vertex set of K̃, where n represents
the number of vertices in K̃. Consider σ(n−1) ⊂ Rn, the simplex formed
by the span of {e1, e2, . . . , en}, where ei represents the ith unit vector. In
this context, K refers to the subcomplex of σ(d) such that [ei0 , . . . , eid ] is a
d-simplex of K if and only if [vi0 , . . . , vid ] is a simplex of K̃. �

Note: All realizations of an abstract simplicial complex are homeomorphic
to each other. The specific realization mentioned above is referred to as the
natural realization. Furthermore, it has been proven that any finite abstract
simplicial complex of dimension d can be realized as a simplicial complex in
R2d+1.

2. Homology Groups

Given a set V representing the vertices of a d-simplex σ(d), we can es-
tablish an orientation for the simplex by selecting a specific ordering for
the vertices. If the vertex ordering differs from our chosen order by an odd
permutation, it is considered reversed, while even permutations are said to
preserve the orientation. Consequently, any simplex can have only two pos-
sible orientations. Moreover, the orientation of a d-simplex induces an ori-
entation on its (d − 1)-faces. To be more precise, if σ(d) := (v0, v1, . . . , vd)
represents an oriented d-simplex, then the orientation of the (d − 1)-face
τ (d−1) of σ(d) with the vertex set {v0, . . . , vi−1, vi+1, . . . , vd} is given by
τ
(d−1)
i = (−1)i(v0, . . . , vi−1, vi+1, . . . , vd).

Definition 2.1. Given a set {σ(d)
1 , . . . , σ

(d)
k } of arbitrarily oriented d-simplices

of a complex K and an abelian group G, we define a d-chain c with coeffi-
cients gi ∈ G as a formal sum.

(2) c := g1σ
(d)
1 + g2σ

(d)
2 + . . .+ gkσ

(d)
k =

k∑
i=1

giσ
(d)
i .

Note: Henceforth we will assume that G = (Z,+).

Lemma 2.2. The set of simplicial d-chains C∆
d is an abelian group (C∆

d ,+).

Proof. The identity element of the group is represented by the empty chain∑
i∈∅ giσ

d
i = eC∆

d
= eG = 0. The sum of two chains is defined as c + c′ =
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i=1 giσ

(d)
i +

∑l
j=1 g

′
jσ

(d)
j =

∑k
i=1(gi+g′i)σ

(d)
i +

∑l
j=k+1 g

′
jσ

(d)
j if k ≤ l and

c + c′ =
∑k

i=1 giσ
(d)
i +

∑l
j=1 g

′
jσ

(d)
j =

∑l
i=1(gi + g′i)σ

(d)
i +

∑k
j=l+1 gjσ

(d)
j if

k > l, thus, we can conclude that c+ c′ ∈ C∆
d . The associativity of the group

operation in C∆
d follows directly from the associativity of the group operation

in G. The inverse element is defined by eC∆
d

= c + (−c) =
∑k

i=1 giσ
(d)
i +∑k

i=1(−gi)σ
(d)
i =

∑k
i=1(gi − gi)σ

(d)
i with c,−c ∈ C∆

d . �

Definition 2.3. Let σ(d) be an oriented d-simplex in a complex K. The
boundary of σ(d) is defined as the simplicial (d− 1)-chain of K with coeffi-
cients in the abelian group gi ∈ G, given by

(3) ∂(σ(d)) = g0σ
(d−1)
0 + g1σ

(d−1)
1 + . . .+ gdσ

(d−1)
d =

d∑
i=1

giσ
(d−1)
i

where σ
(d−1)
i is an (d− 1)-face of σ(d). If d = 0, we define ∂(σ(0)) = eG = 0.

In the following, we will set G = Z. Since σ(d) is an oriented simplex, the
σ
(d−1)
i -faces also have associated orientations. We can extend the definition

of the boundary linearly to elements of C∆
d .

Lemma 2.4. The boundary operator is a group homomorphism ∂ : C∆
d →

C∆
d−1.

Proof. We define the boundary operator for a d-chain c =
∑k

i=1 giσ
(d)
i as fol-

lows: ∂(c) =
∑k

i=1 gi ∂(σ
(d)
i ) =

∑k
i=1 gi

∑d
j=1 σ

(d−1)
j =

∑k
i=1

∑d
j=1 giσ

(d−1)
j

which is an element of C∆
d−1, where σ

(d)
i are the d-simplices of K. We can

compute this by

∂(c+ c′) = ∂(

k∑
i=1

giσ
(d)
i +

l∑
j=1

g′jσ
(d)
j )(4)

=

k∑
i=1

gi∂(σ
(d)
i ) +

l∑
j=1

g′j∂(σ
(d)
j )(5)

= ∂(c) + ∂(c′).(6)
�

Example 2.5. Let’s consider the 2-simplex σ(2) with vertices v0, v1, and
v2. The 1-faces of this simplex are e0 = (v1, v2) connecting v1 and v2,
e1 = (v2, v0) connecting v2 and v0, and e2 = (v0, v1) connecting v0 and v1.
Now, let’s proceed with the computation.

∂(∂(σ(2))) = ∂(e0 + e1 + e2)(7)
= ∂(e0) + ∂(e1) + ∂(e2)(8)
= ∂(v1, v2) + ∂(v2, v0) + ∂(v0, v1)(9)
= [(v2)− (v1)] + [(v0)− (v2)] + [(v1)− (v0)].(10)



NOTES ON SIMPLICIAL AND SINGULAR HOMOLOGY 5

We observe that C∆
0 is an abelian group and that oppositely oriented simplices

cancel each other out, resulting in ∂(∂(σ(2))) = 0. This property can be
generalized to higher dimensions through induction. Therefore, since ∂ is
a linear operator and the chain c is a sum of d-simplices, we can conclude
that ∂2(c) = 0 for any d-chain c in C∆

d . Consequently, the boundary of the
boundary is zero. Moreover, if the boundary of a simplex is zero, it is referred
to as a cycle. By this definition, we can deduce that the boundary of any
simplex is a cycle.

Definition 2.6. A d-chain is referred to as a cycle if its boundary is equal to
zero. We denote the set of d-cycles of a complex K over the group Z as Z∆

d ,
the simplicial cycle group. It is important to note that Z∆

d is a subgroup of
C∆

d and can also be expressed as Z∆
d = ker(∂d).

Definition 2.7. A d-cycle of a k-complex K is said to be homologous to
zero if it can be expressed as the boundary of an (d+ 1)-chain in K, where
d = 0, 1, . . . , k − 1. In other words, a cycle is considered a boundary if it
can be „filled in“ by a higher-dimensional chain. This equivalence relation is
denoted as c ∼ 0, and the subgroup of Z∆

d consisting of boundaries is referred
to as the simplicial boundary group B∆

d . It is worth noting that B∆
d is

equal to the image of the boundary operator ∂d+1.

Since B∆
d is a subgroup of Z∆

d and Z∆
d is an abelian group, every subgroup

of Z∆
d is normal. Therefore, we can construct the group quotient H∆

d =
Z∆
d /B∆

d .

Definition 2.8. The group H∆
d represents the d-dimensional simplicial ho-

mology group of the complex K over Z. It can be expressed as the group
quotient ker(∂d)/im(∂d+1).

Next, we want to examine the structure of this homology group by shed-
ding light on its connection to the connected components of a simplicial com-
plex. We will find that the homology groups of the connected components of
the complex, which in turn form a complex themselves, yield the direct sum
of the homology group of the entire complex.

Definition 2.9. A subcomplex is defined as a subset S of the simplices
belonging to a complex K, where S itself forms a complex.

Definition 2.10. The collection of all simplices in a complex K with dimen-
sions less than or equal to d is referred to as the d-skeleton of K.

By definition, the d-skeleton forms a subcomplex.

Definition 2.11. A complex K is considered connected if it cannot be
expressed as the disjoint union of two or more non-empty subcomplexes. A
geometric complex is path-connected if there exists a path consisting of
1-simplices connecting any vertex to any other vertex.

Lemma 2.12. Path-connectedness ⇐⇒ connectedness.
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Proof. „=⇒“: Let us assume that K is not connected. In this case, we can
choose two separate subcomplexes, namely L and M , which do not share
any common elements, but when combined, they form the entire complex
L ∪M = K. Now, let’s suppose that there exists a path between a vertex l0
in L and a vertex m0 in M . However, if we consider the last vertex li in this
path that belongs to L, we observe that the 1-simplex connecting li to the
next vertex in the path cannot be a part of either L or M . If it were, then
L and M would have a nonempty intersection, which contradicts our initial
assumption that K is not connected.

„⇐=“: Now, let’s consider the other direction. Suppose there are two
points, namely l0 and m0, in K that do not have a path connecting them.
In this case, we can define L as the path-connected subcomplex of K that
contains l0, and M as the path-connected subcomplex that contains m0. If
there exists a vertex v0 in the intersection of L and M (i.e., v0 ∈ L∩M 6= ∅),
then we can find a path from l0 to v0 and another path from v0 to m0. By
concatenating these paths, we obtain a path from l0 to m0, which contradicts
our initial assumption that there is no path between l0 and m0. Therefore,
we conclude that L and M must have an empty intersection (L ∩ M = ∅),
indicating that K is not connected. �

Theorem 1. Let K1, . . . ,Kp be the collection of all connected components
of a complex K. Furthermore, let H∆

di
represent the dth simplicial homology

group of Ki, and H∆
d denote the dth simplicial homology group of K. In this

context, we can establish that H∆
d is isomorphic to the direct sum H∆

d1
⊕· · ·⊕

H∆
dp

.

Proof. Let C∆
d represent the group of simplicial d-chains of K, and Ki denote

the ith component of K. We can define C∆
di

as the group of simplicial d-chains
of Ki. It is evident that C∆

di
is a subgroup of C∆

d . Furthermore, we observe
that C∆

d can be expressed as the direct sum of C∆
d1
, . . . , C∆

dp
:

(11) C∆
d = C∆

d1
⊕ · · · ⊕ C∆

dp
.

Our goal is to demonstrate that a similar decomposition can be applied to
the groups B∆

d and Z∆
d . By considering B∆

di
as the image of ∂d+1 restricted

to the subgroup C∆
di

, we can represent the group B∆
d as the direct sum of

these restrictions:
(12) B∆

d = B∆
d1

⊕ · · · ⊕B∆
dp
.

Thus, for any element c ∈ C∆
d+1, which can be represented as:

c = c1 + · · ·+ cp, ∂d+1(c) = ∂d+1(c1) + · · ·+ ∂d+1(cp) ∈ B∆
d ,(13)

where ci ∈ C∆
(d+1)i

. Let us define Z∆
di

as the intersection of the kernel of ∂d and
C∆

di
. It follows that Z∆

d can be expressed as the direct sum of Z∆
d1
, . . . , Z∆

dp
:

(14) Z∆
d = Z∆

d1
⊕ · · · ⊕ Z∆

dp
.
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To verify this, we observe that for an element c ∈ C∆
d to belong to Z∆

d , we
require ∂d(c) = 0. However, we can express ∂d(c) as ∂d(c1) + · · · + ∂d(cp).
Therefore, for ∂d(c) = 0 to hold, it implies that ∂d(ci) = 0, indicating that
ci ∈ Z∆

di
. Since both Z∆

d and B∆
d can be decomposed componentwise, we can

conclude that:

(15) Z∆
d /B∆

d = Z∆
d1
/B∆

d1
⊕ · · · ⊕ Z∆

dp
/B∆

dp
,

and consequently:

(16) H∆
d = H∆

d1
⊕ · · · ⊕H∆

dp
.

�

Definition 2.13. The index of a chain c =
∑k

i=1 giσ
(d)
i is defined as the

sum of the coefficients I(c) =
∑k

i=1 gi.

Proposition 2.14. If K is a connected complex and c is a 0-chain with
I(c) = 0, then the condition I(c) = 0 is equivalent to c ∼ 0, where ∼
denotes homology equivalence. Furthermore, in this case, the zeroth simplicial
homology group H∆

0 (K,Z) is isomorphic to the integers Z.

Proof. We begin by proving that c ∼ 0 =⇒ I(c) = 0. Let σ(1) = (v0, v1) be
a 1-simplex. Then, for a chain c = ∂1(gσ

(1)) = gv1 − gv0, we have c ∼ 0. It
is clear that I(c) = I(gσ(1)) = g − g = 0. Since I(c + c′) = I(c) + I(c′), I
is a group homomorphism. For any c ∈ C∆

1 of the form
∑k

i=1 giσ
(1)
i , where

σ
(1)
i = (vi, vi+1), we have c = ∂1(c) ∼ 0 =⇒ I(c) = I(∂1(c)) = 0.

To prove the forward direction, I(x) = 0 =⇒ c ∼ 0, we consider two
vertices v and w of K. Since K is connected, there exists a path between
v and w consisting of 1-simplices σ

(1)
i = (vi, vi+1), i = 1, . . . , k − 1, where

v0 = v and vk = w. We consider the boundary of the chain c =
∑k

i=1 gσ
(1)
i ,

given by ∂1(c) =
∑k

i=1 g∂1(σ
(1)
i ) =

∑k
i=1 g[(vi+1) − (vi))] = gw − gv. Since

∂1(c) is a boundary, we have c = ∂1(c) ∼ 0. This implies that (gw− gv) ∼ 0,
which further implies gw ∼ gv. Therefore, any 0-chain c in K is homologous
to the chain gv. We observe that homologous chains have equal indices, i.e.,
I(c) = I(gv) = g. Thus, we have c ∼ gv =⇒ c ∼ I(c)v. This shows that if
I(c) = 0, then c ∼ 0. Hence, I(c) = 0 is equivalent to c ∼ 0.

As mentioned, I is a homomorphism from C∆
0 = Z∆

0 to Z. For a 0-
simplex c and g ∈ Z, the chain gc ∈ C∆

0 is a cycle with I(gc) = g. Therefore,
I(Z∆

0 ) = Z. Since I(c) = 0 is equivalent to c ∼ 0, we have B∆
0 = ker(I).

This implies that H∆
0 = Z∆

0 /B∆
0

∼= Z. �

At this point, we can deduce the following corollary from Theorem 2.12
and Proposition 2.14:

Corollary 2.15. The zero-dimensional simplicial homology group of a com-
plex K over Z can be represented as Zp =

⊕
p Z, where p denotes the number

of connected components present in K.



8 LUCIANO MELODIA

Example 2.16.
• This implies that the zeroth homology group of the circle is isomorphic

to Z. If we consider a simplicial representation of the circle using four
one-simplices, v1 = (w, v), v2 = (v, y), v3 = (y, x), and v4 = (x,w),
the group Z∆

0 consists of sums over the four zero-simplices v, w, x,
and y with coefficients in Z. Let c be a zero-chain with non-zero
coefficients given by

(17) c = g1v + g2w + g3x+ g4y.

In order to reduce it to an element of H∆
0 , we subtract from it the

chain c′ = g4x− g4y ∼ 0, resulting in
(18) c− c′ = g1v + g2w + (g3 − g4)x.

By repeating this process, we obtain a new chain
(19) c′′ = (g1 − g2 + g3 − g4)v.

Since c′′ ∼ c, it represents an element of H∆
0 . Moreover, since gi ∈ Z,

we can write (g1−g2+g3−g4) ∈ Z as c′′ = gv, where g is an element
of Z. Therefore, we can choose any g, which implies that H∆

0
∼= Z.

• We will demonstrate that H∆
d (Sd) ∼= Z. It is worth noting that the

d-simplex σ(d) and the d-ball are homeomorphic. Consequently, their
boundaries, which consist of (d − 1)-simplices, and the d-sphere are
also homeomorphic. Therefore, the appropriate simplicial structure
to impose on Sd is that of the boundary of the (d+1)-simplex σ(d+1).
Let v0, . . . , vd−1 denote the set of vertices of σ(d+1). It is important
to note that this set is not oriented, and the orientations of the
(d− 1)-simplices can be arbitrarily determined. We will utilize their
numbering to establish orientations. Consequently, all d-chains on
this structure can be expressed as:

(20) c =

d+1∑
i=0

gi(v0, . . . , vi−1, vi+1, . . . , vd),

where gi ∈ Z. Since σ(d+1) itself is not part of the structure, there
are no boundaries in Z∆

d , the group of simplicial cycles. Therefore,
H∆

d = Z∆
d /B∆

d represents the group of simplicial cycles. If c ∈ Z∆
d ,

then ∂d+1(c) = 0. By using Eq. 20, we have:

∂d+1(c) =∂d+1

(
d+1∑
i=0

gi(v0, . . . , vi−1, vi+1, . . . , vd)

)
(21)

=

d+1∑
i=0

gi
( d+1∑

j1

(−1)j(v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vd)
)
.(22)

By rearranging this sum, we obtain terms of the form:
(23) (gk − gl)(v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vd)
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where k, l = 0, . . . , d + 1 for all i, j = 0, . . . , d. Each pair of d-
simplices of σ(d+1) intersect along a (d − 1)-face. Therefore, we
obtain terms of the form given in Eq. 23 for each of these faces.
From this, we can deduce that if ∂d(c) = 0, we must have gk = gl
for all k, l = 0, . . . , d + 1. In other words, g0 = g1 = · · · = gd+1.
Consequently, our original d-chain can be rewritten as:

(24) c =

n+1∑
i=0

g0(v0, . . . , vi−1, vi+1, . . . , vd),

allowing us to choose g0 from Z. Thus, we conclude that H∆
d (Sd) ∼= Z.

• We demonstrate that H∆
d (Dd) = 0. To do so, we employ the simplest

simplicial structure for Dd, which is that of the d-simplex σ(d). Con-
sequently, all d-chains can be expressed as c = gσ(d), where g ∈ Z. It
is important to note that this form is never a boundary, thus implying
that H∆

d = Z∆
d . However, ∂d(c) = 0 is in general only true when

g = 0. Consequently, we can conclude that H∆
d (Dd) ∼= 0.

3. Singular Homology

In the realm of lower dimensions, we possess an intuitive understanding
of when two topological spaces are fundamentally „equivalent“. To formalize
and solidify this intuition, we have devised various methods, one of which is
the concept of homeomorphism. It would be highly desirable to establish a
relationship between the homology groups of homeomorphic spaces. Remark-
ably, it has been discovered that if two topological spaces are homeomorphic,
their homology groups are isomorphic. This fact begs for verification.

To accomplish this task, we require a means of comparing homology groups.
However, it is not immediately evident how we can achieve this using the
tools we have developed thus far. In fact, it proves to be quite a challenging
problem. To circumvent this difficulty, we introduce the notion of singular
homology. The fundamental principles underlying this concept are analogous
to those we have already explored. To compute Zd(X), we need to find the
group of d-cycles in X. Since X is obtained by identifying opposite faces
of ∂dσ

(d), a d-cycle in X corresponds to a d-cycle in ∂dσ
(d) that is not a

boundary of any (d + 1)-dimensional simplex in σ(d). In other words, a d-
cycle in X corresponds to a d-cycle in ∂dσ

(d) that is not a boundary of any
(d+ 1)-dimensional face of σ(d).

Definition 3.1. In the context of a topological space X, we define a singular
d-simplex as a map σ̃(d) : σ(d) → X, where σ̃(d) is continuous.

We define the boundary map ∂d in a similar manner as before:

Definition 3.2. The boundary map, denoted as ∂d, is a function that operates
on the chain group Cd(X) and maps it to the chain group Cd−1(X). It is
defined as follows: For any singular d-simplex σ̃(d) in X, the boundary map
∂d(σ̃

(d)) is obtained by summing over all the (d−1)-simplices that are obtained
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by removing one vertex from σ̃(d). Each term in the sum is multiplied by
(−1)i, where i represents the index of the removed vertex. In other words,
if vi represents the 0-simplex (vertex) of σ̃(d), then the boundary map can be
expressed as:

(25) ∂d(σ̃
(d)) =

∑
i

(−1)iσ̃(d)|[v0,...,vi−1,vi+1,...,vd].

Here, vi is a map that takes the 0-simplex σ(0) to the corresponding vertex in
X, s.t. vi : σ

(0) → X is continuous.

As mentioned earlier, when we apply the boundary map twice to a d-chain
c, denoted as ∂2(c) or ∂d−1(∂d(c)), the result is always zero. This observation
leads us to the idea of defining the singular homology groups in a similar way
to the simplicial homology groups.

Definition 3.3. The singular homology group Hd(X) is defined to be the
quotient Hd(X) = ker(∂d)/im(∂d+1).

In the following section, we will explore how this definition of homology
allows us to establish a simple relationship between homeomorphic spaces and
their corresponding homology groups. This relationship becomes apparent
when we consider the fact that the definitions of Hd and H∆

d are analogous.
Intuitively, we would expect these two groups to be the same. However, this is
not immediately obvious. One reason for this is that H∆

d is finitely generated,
while the chain group Cd(X), from which we derived Hd, is uncountable.

Interestingly, for spaces where both simplicial and singular homology groups
can be calculated, these two groups are indeed equivalent. We will provide
a proof for this later on. But before we do, let us present some facts about
singular homology that support the intuition that Hd is isomorphic to H∆

d .

Proposition 3.4. In the context of a topological space X, it can be observed
that Hd(X) is isomorphic to the direct sum Hd(X1) ⊕ · · · ⊕ Hd(Xp), where
Xi represents the path-connected components of X. This equivalence serves
as the counterpart to Theorem 1.

Proof. As the maps σ̃(d) exhibit continuity, it can be deduced that a singular
simplex always possesses a path-connected image within X. Consequently,
Cd(X) can be expressed as the direct sum of subgroups Cd(X1)⊕· · ·⊕Cd(Xp).
The boundary map ∂ functions as a homomorphism, thereby preserving this
decomposition. Consequently, ker(∂d) and im(∂d+1) also undergo a split,
leading to the conclusion that Hd(X) ∼= Hd(X1)⊕Hd(X2)⊕· · ·⊕Hd(Xp). �

Proposition 3.5. The zero-dimensional homology group of a space X can
be expressed as the direct sum of Z copies, with each copy corresponding to a
distinct path-component of X. This correspondence serves as the parallel to
Corollary 2.15.

Proof. To establish the isomorphism H0(X) ∼= Z, it is sufficient to consider
the case where X is path-connected. For a 0-chain c, the boundary operator
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∂0(c) is always zero since the boundary of any 0-simplex vanishes. Conse-
quently, ker(∂0) = C0(X), which implies that H0(X) = C0(X)/im(∂1) by
definition.

Let us define the map I : C0(X) → Z, where I(c) =
∑

i gi for c =∑
i giσ̃

(0) ∈ C0(X). Our goal is to demonstrate that ker(I) = im(∂1), or in
other words, for any 0-chain c, I(c) = 0 if and only if c ∼ 0. The proof follows
a similar line of reasoning as Proposition 2.14. �

Example 3.6. Alternative proof that Hd(S
d) ∼= Z. To prove that the dth

homology group of the d-sphere is isomorphic to Z, we will use the singu-
lar homology approach. The dth singular chain group Cd(S

d) consists of
formal linear combinations of singular d-simplices in Sd with integer coeffi-
cients. First, we note that Sd is a connected and compact topological space.
Therefore, by the Hurewicz theorem, we have Hd(S

d) ∼= πd(S
d), where πd(S

d)
denotes the dth homotopy group of Sd. Since Sd is simply connected for d ≥ 2,
we have πd(S

d) = 0 for d ≥ 2. However, for d = 1, we have π1(S
1) ∼= Z.

Now, we need to establish the isomorphism between π1(S
1) and H1(S

1).
To do this, we consider the singular 1-chain group C1(S

1), which consists of
formal linear combinations of singular 1-simplices in S1 with integer coeffi-
cients. Let c be a singular 1-chain in C1(S

1). We can write c as c =
∑

i giσ̃
(1)
i ,

where gi ∈ Z and σ̃
(1)
i are singular 1-simplices. The boundary of c is given by

∂1(c) =
∑

i gi∂1(σ̃
(1)
i ). Since S1 is a 1-dimensional manifold, the boundary

of any singular 1-simplex σ̃
(1)
i is a formal linear combination of two points in

S1, each with opposite orientations. Therefore, ∂1(σ̃(1)
i ) = p− q, where p and

q are points in S1. Hence, we have ∂1(c) =
∑

i gi(p−q) = (p−q)
∑

i gi. Since
p and q are fixed points in S1, the sum

∑
i gi is an integer. Therefore, the

boundary of any singular 1-chain c in C1(S
1) is of the form (p− q)k, where

k is an integer. This implies that H1(S
1) = Z1(S

1)/B1(S
1) ∼= Z, where

Z1(S
1) is the group of 1-cycles and B1(S

1) is the group of 1-boundaries.
In conclusion, we have shown that Hd(S

d) ∼= πd(S
d) = 0 for d ≥ 2, and

H1(S
1) ∼= π1(S

1) ∼= Z. Therefore, the dth homology group of the d-sphere is
isomorphic to Z. �

4. Chain Complexes

In order to establish the equivalence between the groups H∆
d and Hd, we

will introduce some concepts that will aid us in our proof.
Firstly, since the maps σ̃(d) are continuous, it follows that a singular sim-

plex always has a path-connected image in X. As a result, we can express
Cd(X) as the direct sum of subgroups Cd(X1)⊕· · ·⊕Cd(Xp), where each sub-
group corresponds to a distinct path-component of X. This decomposition is
preserved by the boundary map ∂, which is a homomorphism. Consequently,
both ker(∂d) and im(∂d+1) also split, leading to the conclusion that Hd(X)
is isomorphic to Hd(X1)⊕Hd(X2)⊕ · · · ⊕Hd(Xp).
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These ideas will serve as valuable tools in our endeavor to prove the equiv-
alence of the groups H∆

d and Hd.

Definition 4.1. A chain complex is an arrangement of abelian groups,
linked together by homomorphisms (referred to as boundary operators), in
such a way that the result of combining any two consecutive maps is precisely
zero.

Example 4.2. The groups Cd(X) represent the collection of singular d-
chains that form a part of a chain complex, where the boundary operator ∂d
guides the flow between these groups.

(26) · · · −→ Cd+1
∂d+1−−−→ Cd

∂d−→ Cd−1 −→ · · · −→ C1
∂1−→ C0

∂0−→ 0.

Definition 4.3. A chain map f between two chain complexes (A, ∂(A))
and (B, ∂(B)) is a collection of maps fd : Ad → Bd such that for each d, the
following conditions hold:

• fd commutes with the operator ∂(A), i.e., ∂(A)
d−1 ◦ fd = fd−1 ◦ ∂(A)

d .
• fd commutes with the operator ∂(B), i.e., ∂(B)

d−1 ◦ fd = fd−1 ◦ ∂(B)
d .

(27)
· · · Ad+1 Ad Ad−1 · · ·

· · · Bd+1 Bd Bd−1 · · ·

∂
(A)
d+2 ∂

(A)
d+1

fd+1

∂
(A)
d

fd

∂
(A)
d−1

fd−1

∂
(B)
d+2 ∂

(B)
d+1 ∂

(B)
d

∂
(B)
d−1

Theorem 2. A chain map f between two chain complexes (A, ∂(A)) and
(B, ∂(B)) induces a homomorphism between their respective homology groups.

Proof. Given a chain map f between two chain complexes (A, ∂(A)) and
(B, ∂(B)), we want to show that f induces a homomorphism f? : Hd(A) →
Hd(B).

By the definition of a chain map, we have f ◦ ∂(A) = ∂(B) ◦ f . Let [c] ∈
Zd(A) be a cycle in A, i.e., ∂

(A)
d (c) = 0. Applying f to both sides of this

equation, we get fd−1(∂
(A)
d (c)) = ∂

(B)
d (fd(c)). Since ∂

(A)
d (c) = 0, we have

fd−1(0) = ∂
(B)
d (fd(c)), which implies ∂

(B)
d (fd(c)) = 0. Therefore, fd(c) is

a cycle in B. Now, let [b] ∈ Bd(A) be a boundary in A, i.e., there exists
a ∈ Ad+1 such that ∂

(A)
d+1(a) = b. Applying f to both sides of this equation,

we get fd(∂
(A)
d+1(a)) = ∂

(B)
d+1(fd+1(a)). Since ∂

(A)
d+1(a) = b, we have fd(b) =

∂
(B)
d+1(fd+1(a)). Therefore, fd(b) is a boundary in B. From the above, we see

that f maps cycles in A to cycles in B and boundaries in A to boundaries in
B. Hence, f induces a well-defined map f? : Hd(A) → Hd(B), where Hd(A)
and Hd(B) are the homology groups of A and B at dimension d, respectively.
To show that f? is a homomorphism, let [c1], [c2] ∈ Hd(A) be two homology
classes. We want to show that f?([c1]+[c2]) = f?([c1])+f?([c2]). Let c1 and c2
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be representatives of [c1] and [c2] respectively. Then, [c1]+ [c2] is represented
by c1 + c2. Applying f to both sides, we have fd(c1 + c2) = fd(c1) + fd(c2).
Since fd(c1) and fd(c2) are cycles in B, we have [fd(c1 + c2)] = [fd(c1)] +
[fd(c2)]. Therefore, f?([c1] + [c2]) = f?([c1]) + f?([c2]).

Hence, we have shown that the chain map f induces a homomorphism
f? : Hd(A) → Hd(B). �

5. Exact and Short Exact Sequences

We can apply Theorem 2 to the case of singular homology. Consider
two topological spaces X and Y . For any map f : X → Y , we can define
an induced homomorphism f? : Cd(X) → Cd(Y ) by composing singular d-
simplices σ̃(d) : σ(d) → X with f . Specifically, we have f? ◦ σ̃(d) = f ◦ σ̃(d) :
σ(d) → Y .

We can extend this definition by applying f? to d-chains in Cd(X). This
gives us a commutative diagram.

(28)
· · · Cd+1(X) Cd(X) Cd−1(X) · · ·

· · · Cd+1(Y ) Cd(Y ) Cd−1(Y ) · · ·

∂d+2 ∂d+1

fd+1

∂d

fd

∂d−1

fd−1

∂d+2 ∂d+1 ∂d ∂d−1

The chain map fd gives rise to a homomorphism f? : Hd(X) → Hd(Y ). It
becomes evident that if X and Y are homeomorphic, meaning there exists a
homeomorphism f : X → Y , then the induced map f? is an isomorphism.

To formalize the relationships between the homology groups of a topolog-
ical space X, a subset A ⊂ X, and the quotient space X/A, we introduce the
concept of exact sequences.

Definition 5.1. An arrangement of elements in the form

(29) · · · → Ad+1
αd+1−−−→ Ad

αd−−→ Ad−1 −→ · · ·
is referred to as an exact sequence when the Ai are abelian groups and the
αi are homomorphisms, and it satisfies the condition that ker(αd) = im(αd+1)
for all d.

Note:
• The condition ker(αd) = im(αd+1) implies that im(αd+1) is a subset

of ker(αd), which is equivalent to αd ◦αd+1 = 0. Therefore, an exact
sequence can be seen as a chain complex.

• Since ker(αd) is a subset of im(αd+1), the homology groups of an
exact sequence are trivial.

Proposition 5.2. We can establish the following equivalences:
(1) 0 −→ A

a−→ B is exact ⇐⇒ ker(a) = 0, or a is injective.
(2) A

a−→ B → 0 is exact ⇐⇒ im(a) = B, or a is surjective.
(3) 0 −→ A

a−→ B
0−→ is exact if and only if a is an isomorphism.
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(4) A sequence of the form 0 −→ A
a−→ B −→ 0 is said to be exact if and

only if the following conditions hold:
• The map a : A → B is injective, meaning that ker(a) = 0.
• The map b : B → 0 is surjective, meaning that im(b) = 0.
• The kernel of b is equal to the image of a, i.e., ker(b) = im(a).
• In this case, the map b induces an isomorphism C ∼= B/im(a),

where C is the quotient of B by the image of a.
If the map a : A ↪→ B is an inclusion, then C ∼= B/A, where B/A
denotes the quotient of B by the subgroup A. This type of exact
sequence is commonly referred to as a short exact sequence.

Proof.
1. „⇒“: First, assume that 0 −→ A

a−→ B is exact. This means that
im(0) = ker(a), which implies that ker(a) = 0 since the image of the
zero map is always the trivial group. Therefore, ker(a) = 0.

„⇐“: Conversely, suppose that ker(a) = 0 or a is injective. We
need to show that im(0) = ker(a). Since ker(a) = 0, the only element
mapped to the identity element in B is the zero element of A. This
means that the image of the zero map is equal to the kernel of a,
which implies that 0 −→ A

a−→ B is exact.
2. „⇒“: First, assume that A

a−→ B −→ 0 is exact. This means that
im(a) = ker(0), which implies that im(a) = B since the kernel of the
zero map is always the entire group. Therefore, im(a) = B.

„⇐“: Conversely, suppose that im(a) = B or a is surjective. We
need to show that im(a) = ker(0). Since im(a) = B, every element
in B has a preimage in A under the map a. This means that the
image of a is equal to the kernel of the zero map, which implies that
A

a−→ B → 0 is exact.
3. „⇒“: First, assume that 0 −→ A

a−→ B −→ 0 is exact. This means that
im(0) = ker(a) and im(a) = ker(0). Since the image of the zero map is
always the trivial group, we have ker(0) = B. Therefore, im(a) = B.
Since im(a) = B, this implies that a is surjective. To show that a is
also injective, we need to show that ker(a) = 0. From the exactness of
the sequence, we have ker(a) = im(0) = 0. Therefore, a is injective.
Since a is both surjective and injective, it is an isomorphism.

„⇐“: Conversely, suppose that a is an isomorphism. This means
that a is both surjective and injective. Since a is surjective, we have
im(a) = B. Since a is injective, we have ker(a) = 0. From the
exactness of the sequence, we have im(a) = ker(0). Since the kernel
of the zero map is always the entire group, we have ker(0) = B.
Therefore, im(a) = B.

(1) „⇒“: First, assume that the sequence is exact. This means that a
is injective, im(a) = ker(b), and b is surjective. Since b is a map
from B to 0, the only possible value for im(b) is the zero element.
Therefore, im(b) = 0. Since im(a) = ker(b), we have ker(b) = 0.
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This implies that b is the zero map, and since b is surjective, the only
possible value for B is the zero element. Therefore, B = 0. Since a
is injective and B = 0, the only possible value for A is also the zero
element of 0. Therefore, A = 0. We have shown that A = 0, B = 0,
and a is injective. This implies that a is an isomorphism.

„⇐“: Conversely, suppose that a is an isomorphism. This means
that a is injective and surjective. Since a is injective, ker(a) = 0.
Since a is surjective, im(a) = B. Therefore, ker(a) = 0 = im(a).
Since im(a) = ker(b), we have ker(b) = 0 = im(a). This implies that
b is the zero map. Since b is surjective, the only possible value for B
is the zero element. Therefore, B = 0. Since B = 0, the only possible
value for im(b) is also the zero element. Therefore, im(b) = 0. We
have shown that B = 0, im(b) = 0, and ker(b) = im(a). This implies
that the sequence is exact.

�

6. Relative Homology Groups

The concept we will now discuss is that of relative homology groups. Let X
be a topological space and A be a subspace of X. We define Cd(X,A) as the
quotient group Cd(X)/Cd(A). This means that chains in A are considered
equivalent to the trivial chains in Cd(X).

Since the boundary operator ∂d : Cd(X) → Cd−1(X) also maps Cd(A)
to Cd−1(A), we obtain a natural boundary map on the quotient group ∂d :
Cd(X,A) → Cd−1(X,A). This gives rise to the following sequence:

(30) · · · −→ Cd+1(X,A)
∂d+1−−−→ Cd(X,A)

∂d−→ Cd−1(X,A) → · · ·

This sequence forms a chain complex because ∂d+1 ◦ ∂d = 0. We can then
define the relative homology groups Hd(X,A) as the homology groups of this
chain complex.

We propose two important facts about Hd(X,A):

Proposition 6.1.
1. Elements in Hd(X,A) are represented by relative cycles, or d-chains

c in Cd(X) such that ∂d(c) = Cd−1(A).
2. A relative cycle c is trivial if and only if it is a relative boundary,

i.e. c is the sum of a chain in Cd(A) and the boundary of a chain in
Cd+1(X).

Proof.
1. „⇒“: Let us begin by considering an element [c] ∈ Hd(X,A), where

[c] represents the homology class of c in Hd(X,A). By definition, [c] is
the set of all d-chains c′ in Cd(X) that are homologous to c, denoted
by ∂d(c

′) = ∂d(c). Now, let’s examine the boundary of c under the
boundary operator ∂d. We observe that ∂d(c) ∈ Cd−1(X), indicating
that ∂d(c) is a (d − 1)-chain in X. Since A is a subspace of X, we
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can consider the inclusion map f : A ↪→ X. This map induces a
homomorphism f? : Cd−1(A) → Cd−1(X) between the chain groups.
Next, let’s consider the image of ∂d(c) under the map f . We have
f(∂d(c)) ∈ Cd−1(X), implying that f(∂d(c)) is a (d− 1)-chain in X.
As f is a homomorphism, we have f(∂d(c)) = ∂d(f(c)), where f?(c)
is a (d− 1)-chain in A. Consequently, we can conclude that ∂d(c) =
∂d(f(c)), where ∂d(c) ∈ Cd−1(X) and ∂d(f(c)) ∈ Cd−1(A). This
demonstrates that c is a relative cycle, as it satisfies the condition
∂d(c) ∈ Cd−1(A).

„⇐“: Conversely, if we possess a relative cycle c in Cd(X) such
that ∂d(c) ∈ Cd−1(A), we can consider the homology class [c] in
Hd(X,A). This class represents the set of all d-chains in Cd(X) that
are homologous to c, denoted by ∂d(c

′) = ∂d(c). Hence, we have
successfully demonstrated that elements in Hd(X,A) are represented
by relative cycles, which are d-chains c in Cd(X) such that ∂d(c) ∈
Cd−1(A).

2. „⇒“: First, let’s assume that c is a relative boundary. This implies
that c can be written as the sum of a chain in Cd(A), denoted as a,
and the boundary of a chain in Cd+1(X), denoted as b. Therefore, we
have c = a+∂d+1(b). Now, let’s consider the boundary of c. We have
∂d(c) = ∂d(a + ∂d+1(b)). By utilizing the linearity of the boundary
operator, we can rewrite this as ∂d(a)+∂d(∂d+1(b)). Since a is a chain
in Cd(A), its boundary ∂d(a) lies in Cd−1(A). Additionally, we know
that ∂d(∂d+1(b)) = 0 because the boundary of a boundary is always
zero. Therefore, we have ∂d(c) = ∂d(a) + ∂d(∂d+1(b)) = ∂d(a) + 0 =
∂d(a). As ∂d(a) is in Cd−1(A), we can conclude that ∂d(c) is also in
Cd−1(A). This demonstrates that c is a relative cycle.

„⇐“: Conversely, let’s assume that c is a trivial relative cycle,
indicating that ∂d(c) is in Cd−1(A). Since ∂d(c) lies in Cd−1(A), we
can express it as the boundary of a chain in Cd(A). Let’s denote this
chain as a. Therefore, we have ∂d(c) = ∂d(a). Now, let’s consider
the chain b = c − a. We have ∂d(b) = ∂d(c − a) = ∂d(c) − ∂d(a) =
∂d(c)−∂d(c) = 0. This demonstrates that b is a chain in Cd(X) whose
boundary is zero. Hence, we have successfully shown that c can be
expressed as the sum of a chain in Cd(A) (represented by a) and the
boundary of a chain in Cd+1(X) (represented by b). Consequently, c
is a relative boundary.

In conclusion, we have proven that a relative cycle c is trivial if and
only if it is a relative boundary, meaning that c can be expressed as
the sum of a chain in Cd(A) and the boundary of a chain in Cd+1(X).

�

Theorem 3. The relative homology groups Hd(X,A) are part of the exact
sequence:
· · · → Hd(A) → Hd(X) → Hd(X,A) → Hd−1(A) → · · · → H0(X,A) → 0.
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Proof. Consider the following diagram:

(31)
0 Cd(A) Cd(X) Cd(X,A) 0

0 Cd−1(A) Cd−1(X) Cd−1(X,A) 0.

i

∂d

j

∂d ∂d

i j

i is the inclusion Cd(A) ↪→ Cd(X) and j is the quotient map Cd(X) �
Cd(X,A). This diagram is commuting, and turning it by 90 degrees yields
the following diagram for abelian groups Ai, Bi and Ci:

(32)

0 0 0

· · · Ad+1 Ad Ad−1 · · ·

· · · Bd+1 Bd Bd−1 · · ·

· · · Cd+1 Cd Cd−1 · · ·

0 0 0 .

∂d+1

i

∂d

i

∂d−1

i

∂d+1

j

∂d

j

∂d−1

j

∂d+1 ∂d ∂d−1

Presenting the diagram in this manner indicates that i and j are chain maps,
and therefore induce maps i? and j? on homology, as stated in Theorem
2. Let us consider a cycle c ∈ Cd. Since j is surjective, there exists a
chain b ∈ Bd such that c = j(b). By the commutativity of the diagram, we
have j(∂d(b)) = ∂d(j(b)). As c is a cycle, we have ∂d(c) = ∂d(j(b)) = 0.
This implies that ∂d(b) ∈ ker(j). Since the columns of the diagram are
exact, we know that ker(j) = im(i). Therefore, there exists an element
a ∈ Ad−1 such that ∂d(b) = i(a). By the commutativity of the diagram, we
have i(∂d−1(a)) = ∂d−1(i(a)) = ∂d−1(∂d(b)). This leads to the implication
that if i is injective, then ∂d−1(a) = 0. Hence, a is a cycle and represents
an element [a] ∈ Hd−1(A) in the homology. We can now define the map
∂ : Hd(C) → Hd−1(A) by sending the homology class of [c] to the homology
class of [a], denoted as ∂d([c]) = [a]. This definition is well-defined due to:

(1) Since i is injective, the value of a is uniquely determined by ∂d(b).
(2) If we choose a different chain b′ instead of b, we have j(b′) = j(b) =⇒

j(b′) − j(b) = 0 =⇒ j(b′ − b) = 0 =⇒ b − b′ ∈ ker(j) = im(i).
Therefore, b − b′ = i(a′), or b′ = b + i(a′). This implies that ∂d(b +
i(a′)) = ∂d(b) + ∂d(i(a

′)) = i(a) + i∂d(a
′) = i(a + ∂d(a

′)). However,
since ∂d(a

′) ∼ 0, we have a+ ∂d(a
′) ∼ a.

(3) If we select c? from the coset containing c, it means that c? =
c + ∂d(c

′). Since c′ can be expressed as j(b′) for some b′, we can
rewrite c + ∂d(c

′) as c + ∂d(j(b
′)) = j(b) + j∂d(b

′) = j(b + ∂d(b
′)).
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Therefore, modifying c results in a corresponding modification of b
to a homologous element, but this does not have any impact on a
whatsoever.

�

Proposition 6.2. The map ∂d : Hd(C) → Hd−1(A) is a homomorphism.

Proof. If ∂d([c1]) yields [a1] and ∂d([c2]) yields [a2], as indicated earlier, then
we can conclude that j(b1 + b2) = j(b1) + j(b2) = c1 + c2, and i(a1 + a2) =
∂d(b1) + ∂d(b2). Consequently, it follows that ∂d([c1] + [c2]) = [a1] + [a2]. �

Lemma 6.3. The given sequence,

· · · → Hd(A)
i?−→ Hd(B)

j?−→ Hd(C)
∂d−→ Hd−1(A)

i?−→ Hd−1(B) → · · ·
is said to be exact.

Proof. There are six inclusions that need to be confirmed:
(1) Inclusion of the image of i? within the kernel of j?: Because j ◦ i = 0,

it implies that j? ◦ i? = 0.
(2) Inclusion of the image of j? within the kernel of ∂d: By definition,

∂d(b) = 0, so ∂d ◦ j? = 0.
(3) Inclusion of the image of ∂d within the kernel of i?: We have i?◦∂d = 0

since i? ◦ ∂d([c]) = [∂d(b)] = 0.
(4) Inclusion of the kernel of j? within the image of i?: A homology class

in the kernel of j? can be represented by a cycle b ∈ Bd such that
j(b) = ∂d+1(c

′) is a boundary for some c′ ∈ Cd+1. The surjectivity of
j implies that c′ = j(b′) for some b′ ∈ Bd+1. Consequently, we have
j(b) = ∂d+1(c

′) = ∂d+1 ◦ j(b′), which leads to j(b − ∂d+1(b
′)) = 0.

Therefore, b− ∂d+1(b
′) = i(a) for some a ∈ Ad. Since i is injective, a

is a cycle because i ◦ ∂d(a) = ∂d ◦ i(a) = ∂d(b − ∂d+1(b
′)) = ∂d(b) =

0, given that b is a cycle. Consequently, i?[a] = [b], and the two
inclusions demonstrate that im(i?) = ker(j?).

(5) Inclusion of the kernel of ∂ within the image of j?: Let’s consider a
representative c of a homology class in ker(∂d). This means we have
a = ∂d(a

′) for some a′ ∈ Ad. The element b− i(a′) is a cycle because
∂d(b− i(a′)) = ∂d(b)−∂d ◦ i(a′) = ∂d(b)− i(∂d(a

′)) = ∂d(b)− i(a) = 0.
Furthermore, we have j(b− i(a′)) = j(b)− j ◦ i(a′) = j(b) = c. Thus,
we conclude that ker(∂d) ⊂ im(j?).

(6) Inclusion of the kernel of i? within the image of ∂: Consider a cycle
a in Ad−1 such that i(a) = ∂d(b) for some b in Bd. Since ∂d(j(b)) =
j(∂d(b)) = j ◦ i(a) = 0, we can determine that j(b) is also a cycle.
Consequently, ∂d([j(b)]) = [a], which demonstrates that ker(i?) ⊂
im(∂d).

Indeed, we have established the following relationships:
• im(i?) = ker(j?),
• im(j?) = ker(∂),
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• im(∂) = ker(i?).
These relationships confirm that the sequence is exact, as it satisfies all the
necessary conditions for exactness. �

Proposition 6.4. The given sequence,

· · · → Hd(A)
i?−→ Hd(X)

j?−→ Hd(X,A)
∂d−→ Hd−1(A) → · · · → Hd(X,A) → 0

is said to be exact.

Proof. The conclusion follows from the previous Proposition 6.3, with the
additional observation that for a relative cycle c in Hd(X,A), the application
of ∂d([c]) results in the class of the cycle [∂d(c)] in Hd−1(A). �

Additionally, we make reference to the Excision Theorem, a well-established
result within this field. While the theorem’s statement appears straightfor-
ward and intuitively sound, its actual proof can be rather intricate. There-
fore, we present the theorem without delving into the proof details here.

In simpler terms, the Excision Theorem enables us to investigate the ho-
mology of a space by effectively „cutting out“ a smaller subspace, provided
certain conditions regarding the relationship between these subspaces are sat-
isfied. In essence, this theorem assures us that, under the specified conditions,
the homology of the original space remains unchanged when compared to the
homology of the space resulting from the removal of the smaller subspace.

Theorem 4. (The Excision Theorem) Given Y ⊂ A ⊂ X, with the closure
of Y contained in the interior of A, then (X \ Y,A \ Y ) ↪→ (X,A) induces
isomorphisms Hd(X \ Y,A \ Y ) → Hd(X,A) for all d.

7. Equivalence of Simplicial Homology Group H∆
d and Singular

Homology Group Hd

We aim to establish the equivalence between the groups Hd(X) and H∆
d (X).

It is important to note that simplicial homology groups are defined and
computable only for simplicial structures. However, this limitation can be
overcome by calculating singular homology groups for any topological space,
including simplicial complexes. Furthermore, the fact that homeomorphic
spaces have isomorphic singular homology groups suggests that we can impose
a simplicial structure on a topological space. Therefore, to prove the equiv-
alence of Hd(X) and H∆

d (X), we consider an arbitrary simplicial complex
as our topological space X. It is worth mentioning that not all topological
spaces can be homeomorphic to a simplicial complex, but for the purpose of
this paper, we will focus solely on spaces that can be represented as simplicial
complexes.

To demonstrate the equivalence of Hd(X) and H∆
d (X), we need to estab-

lish the existence of an isomorphism between the two groups for all d. It is
relatively straightforward to observe the existence of a homomorphism: we
already have a map C∆

d (X) → Cd(X) from the simplicial chain group to the
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singular chain group, which maps each simplex of X to σ̃(d) : σ(d) → X. This
map induces a corresponding map H∆

d (X) → Hd(X).

Lemma 7.1. (The Five Lemma) In a commutative diagram structured as
follows:

(33)
A B C D E

A′ B′ C ′ D′ E′.

i

α

j

β

k

γ

l

δ ε

i′ j′ k′ l′

If the morphisms α, β, δ, ε are all isomorphisms, and both rows in the diagram
are exact, then it follows that γ is also an isomorphism.

Proof. The commutativity of the diagram implies that γ is a homomorphism.
To establish that γ is bijective, we proceed as follows:

• Surjectivity of γ: Let c′ ∈ C ′. Since δ is surjective, there exists
some d ∈ D such that k′(c′) = δ(d). Injectivity of ε implies ε ◦ l(d) =
l′◦δ(d) = l′◦k′(c′) = 0. Therefore, l(d) = 0. Since the rows are exact,
we have d = k(c) for some c ∈ C. This leads to k′(c′) − k′(γ(c)) =
k′(c′)− δ ◦ k(c) = k′(c′)− δ(d) = 0. Hence, k′(c′ − γ(c)) = 0, and by
exactness, c′ − γ(c) = j′(b′) for some b′ ∈ B′. The surjectivity of β
implies that b′ = β(b) for some b ∈ B. Consequently, γ(c + j(b)) =
γ(c) + γ(j(b)) = γ(c) + j′ ◦ β(b) = γ(c)− j′(b′) = c′, establishing the
surjectivity of γ.

• Injectivity of γ: Suppose γ(c) = 0. Since δ is injective, we have
δ(k(c)) = k′(γ(c)) = 0. This implies k(c) = 0. Therefore, c = j(b)
for some b ∈ B. From γ(c) = γ(j(b)) = j′(β(b)), we deduce that
β(b) = i′(a′) for some a′ ∈ A′. Surjectivity of α gives us a′ = α(a)
for some a ∈ A. As β is injective, we find that β(i(a)−b) = β(i(a))−
β(b) = i′(α(a)) − β(b) = i′(a′) − β(b) = 0. Therefore, i(a) − b = 0,
which implies b = i(a). Consequently, c = j(b) = j(i(a)) = 0 by the
exactness of rows. Hence, γ has a trivial kernel and is thus injective.

In summary, we have shown that γ is both surjective and injective, which
establishes its bijectiveness. �

Simplicial and singular homology, although stemming from similar con-
cepts, have distinct purposes in algebraic topology. They excel in different
scenarios: Simplicial homology simplifies homology group calculations, par-
ticularly suited for geometric problems, while singular homology is advanta-
geous when streamlined theorem proofs are needed, thanks to its compati-
bility with continuous maps.

The fundamental achievement in algebraic topology lies in their equiva-
lence. This unification not only bridges the gap between the two approaches
but also equips mathematicians with a versatile tool for addressing a wide
range of problems. It stands as a pivotal result in the field, empowering
researchers to tackle diverse challenges effectively.
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Theorem 5. (Equivalence of Simplicial and Singular Homology) For all val-
ues of d, the homomorphisms from the simplicial homology group H∆

d (X) to
the singular homology group Hd(X) are isomorphisms. Therefore, it follows
that the singular and simplicial homology groups are equivalent.

Proof. Consider a simplicial complex X. For the k-skeleton Xk of X, we
obtain the following commutative diagram of exact sequences due to the
inclusion Xk−1 ⊂ Xk:

H∆
d+1(X

k, Xk−1) H∆
d (Xk−1) H∆

d (Xk) H∆
d (Xk, Xk−1) H∆

d−1(X
k−1)

Hd+1(X
k, Xk−1) Hd(X

k−1) Hd(X
k) Hd(X

k, Xk−1) Hd−1(X
k−1)

Here, Xk/Xk−1 contains only simplices of dimension k, so for d 6= k, the
group Cd(X

k, Xk−1) is trivial. When d = k, Cd(X
k, Xk−1) is a free abelian

group with a basis consisting of the k-simplices of X. Since the cycles Zd

form a subgroup of Cd, and the boundary group Bd is empty, H∆
d (Xk, Xk−1)

is essentially the same as Cd, with the distinction that when d = k, the basis
of Zd consists of k-cycles.

We notice that the characteristic maps σ(k) → X for all the k-simplices
of X provide us with a map Φ :

∐
i(σ

(k)
i , σ

(k−1)
i ) → (Xk, Xk−1). It is ev-

ident that this map induces a homeomorphism Φ? :
∐

i σ
(k)
i /

∐
i σ

(k−1)
i →

Xk/Xk−1. As a result, we have Hd(
∐

i(σ
(k)
i , σ

(k−1)
i )) ∼= Hd(X

k, Xk−1).
Utilizing the Excision Theorem 4, which allows us to replace a subspace

with its complement while preserving homology, we can conclude that there
exists an isomorphism Hd(X,A) → Hd(X/A) for all good pairs (X,A). Con-
sequently, we have Hd(

∐
i(σ

(k)
i , σ

(k−1)
i )) ∼= Hd(X

k, Xk−1) ∼= Hd(X
k/Xk−1).

Through transitivity, this establishes Hd(
∐

i(σ
(k)
i , σ

(k−1)
i )) ∼= Hd(X

k/Xk−1).
This result shows that Hd(X

k, Xk−1) is trivial for d 6= k and is a free abelian
group with the basis being the relative cycles defined by the maps σ(k) → X.

To complete the argument, we use induction and assume that the second
and fifth parts of the homology long exact sequence are isomorphisms for
dimensions less than k. In other words, we assume that:

• H∆
d+1(X

k−1, Xk−2) ∼= Hd+1(X
k−1, Xk−2) for d ≤ k − 2.

• H∆
d (Xk−1, Xk−2) → Hd(X

k−1, Xk−2) is an isomorphism for d ≤
k − 1.

Now, we aim to show that the map H∆
d (Xk, Xk−1) → Hd(X

k, Xk−1) is an
isomorphism for all d. We already know this holds for d 6= k. For d = k, we
have:
(34) H∆

k (Xk, Xk−1) ∼= Hk(X
k, Xk−1)

This follows from the Five Lemma 7.1 regarding the isomorphism between
the relative simplicial homology group H∆

k (Xk, Xk−1) and the relative ho-
mology group Hk(X

k, Xk−1). Having established the isomorphism for all d,



22 LUCIANO MELODIA

we’ve shown that the map H∆
d (Xk, Xk−1) → Hd(X

k, Xk−1) is indeed an
isomorphism for all dimensions.

In summary, by induction and the previous arguments, we’ve demon-
strated that for all k, the homomorphisms H∆

d (Xk, Xk−1) → Hd(X
k, Xk−1)

are isomorphisms, which confirms the equivalence between simplicial and sin-
gular homology. �
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